Program Academic Information

Master of Technology Bioengineering 2025-27

Programs Academic Information |2025-27

Table of Contents

Section 1: Program General Information	2
Name	2
Level	2
Section 2: Program Educational Objectives	2
Section 3: Program Outcomes	3
Section 4: International standards and subject benchmarks	3
Referred URL	3
Section 5: Program Structure	4
Semester 01	4
Semester 02	5
Semester 03	6
Semester 04	6
Total program course distribution	6
Section 6: Course Sequence	7
Section 7: Specialization Sequence	7
Section 8: List of Textbooks and Reference Books	8

Programs Academic Information | 2025-27

Section 1: Program General Information					
	M.Tech	Bioengineering			
D	Speciali	zation in			
Program	I.	Bioinformatics			
	II.	Biomaterials and Tissue Engineering			
Level	Postgraduate				
Course Duration	2 years (4 Semester)				

Section 2: Program Educational Objectives (PEOs)

Broad goals that address institutional and program mission statements and are responsive to the expressed interests of various groups of program stakeholders.

PEO-1 :	Graduates will become innovators or entrepreneurs to be engaged in				
	pharmaceuticals, life sciences, data analytics and biomedical industries.				
	Graduates will acquire in-depth knowledge and practical experience in				
PEO-2 :	bioinformatics, biomaterials, tissue engineering to handle specific				
challenges in the relevant fields.					
	Graduates with a strong foundation in bioengineering principles, will be				
PEO-3 :	able to gain employment in life science, pharmaceuticals and medical				
	industries or interrelated professions.				
	Graduates will be able to exhibit leadership skills, make decisions with				
PEO-4 :	societal and ethical responsibilities, function and communicate effectively				
in multidisciplinary activities.					
Graduates will be successful in pursuing career opportunities in					
PEO-5 :	and Development.				

Section 3: Program Outcomes

The program must then formulate a set of program outcomes (knowledge, skills, and attitudes the program graduates should have) that directly address the educational objectives and encompass certain specified outcomes.

1.	Ability to apply the knowledge of Life Science, Technology, and Engineering to address healthcare problems.
2.	Ability to identify and analyze healthcare related problems and formulate feasible technical solutions to improve health and health care.
3.	Ability to develop deep understanding of tissue engineering or bioinformatics techniques, enabling them to analyze complex biological data and contribute to the development of novel computational tools for various biological applications.
4.	Ability to apply computational tools and softwares for modeling biological systems, analyzing bio-molecular data, and simulating tissue growth, supporting the development of new biomedical technologies.
5.	Ability to integrate engineering principles with biological systems to solve complex problems in healthcare, developing innovative solutions for disease diagnosis, treatment, and prevention.
6.	Ability to think critically to inspire sustainable development.
7.	Ability to have a thorough understanding of professional and ethical responsibility.
8.	Ability to perform within a diversified multidisciplinary team and exhibit leadership.
9.	Ability to engage in independent and life-long learning.

Program Specific Outcomes :

By the end of the program, students should be able to develop the following specific skills and accomplishments

Graduates will be proficient in designing and implementing cutting-edge biomedical technologies. They will gain hands-on experience in the product development lifecycle, from conceptualization to

PSO-1 commercialization, adhering to industry standards and regulatory requirements.

Graduates will have the ability to integrate biotechnological advancements, such as gene therapy, regenerative medicine, and bioinformatics, into clinical and industrial applications. This will be based

PSO-2 on industry insights, ensuring they can contribute to solving pressing healthcare challenges while navigating the regulatory landscape and market demands of the bioengineering industry.

Section 4: Program Benchmarking

Details of the international standards / subject benchmark statements referred and web link for the same.

International standards / benchmarks	URL
statements referred	
	https://bioengineering.illinois.e
University of Illinois	<u>du/academics/graduate/meng/</u>
	curriculum/bioengineering
Indian Institute of Science and Technology (IISC	https://be.iisc.ac.in/m-tech-in-
Bangalore)	bioengineering/
	https://www.sctimst.ac.in/About
Sree Chitra Thirunal Institute for Medical Sciences and	%20SCTIMST/Organisation/Bio
Technology, Trivandrum	Medical%20Technology%20Win
	g/Department%20of%20Medica
	l%20Devices%20Engineering/
	http://www.smst.iitkgp.ac.in/Sm
School of Medical science and Technology (SMST), IIT	st/curriculum
Kharagpur	
	https://as.iiita.ac.in/wp-
Indian institute of Information Technology (IIIT)-	<pre>content/uploads/2023/11/M.Te</pre>
Allahabad	<u>chBI_NEP.pdf</u>
	https://www.dtu.ac.in/Web/Dep
Delhi Technological University (DTU)	artments/BioTech/PEOs/MTech
	BIOINFOCO.pdf
Accreditation Board of Engineering & Technology	http://www.abet.org/
(ABET)	
CDIO [™] Educational Framework	http://www.cdio.org/

Programs Academic Information | 2025-27

Section 5: Program Structure					
CL	Classroom Interaction	τυ	Tutorials	PR	Practical
сс	Core Course	FE	Free Elective	DE	Specialization Sequence with Directed Electives
I	Specialization in Bioinformatics			п	Specialization in Biomaterials and Tissue Engineering

Semest	Semester - 01 Total Credits: 24								
S. No	Course	e Course Title	Course	Credits	Weekly Contact Hours				
5. NO	Code		Туре	Creans	CL	TU	PR	Total	
1.		Mathematical Methods for Bioengineers	СС	4	3	1	0	4	
2.		Human Physiology	CC	4	3	1	0	4	
3.		Design Thinking for Medical Innovation	DE	3	3	1	0	4	
4.		Computational Biology and Biostatistics	CC	4	2	1	2	5	
5.		Introduction to R Programming ^I	DE	4	3	1	0	4	
5.		Biomaterials and Artificial Organs ^{II}			3	1	0	4	
6.		Seminar and Technical Writing - I	СС	0	0	0	2	2	
7.		Research Methodology and Medical Ethics	СС	2	1	1	0	2	

*Bridge course in Biology (credit -0) can be offered for students having non-relevant backgrounds.

Programs Academic Information |2025-27

Sei	Semester - 02 Total Credits: 24								
S.	Course Course Title Course		Credits	Weekly Contact Hours					
No	Code	Course mile	Туре	Creans	CL	T U	PR	Total	
1		Bio analytical Techniques	CC	4	2	1	2	5	
2		Entrepreneurship and IPR	DE	2					
		OMICS ^I			3	1	0	4	
3		Principles of Tissue Engineering ^{II}	СС	4	3	1	0	4	
5		Drug Delivery: Principles and applications ^{II}			3	1	0	4	
		Molecular structure prediction		4	2	1	2	5	
4		and Visualization ^I	DE		2		2	Э	
		Microfluidics ^{II}			3	1	0	4	
5		Biomedical Device Quality and	FE	4					
		Regulatory Standards							
6		Python and bio-python ^I	CC	4					
7		Data mining in Bioinformatics			2	1	2	5	
1		Devices and Diagnostics			2	1	2	5	
8		Seminar and Technical Writing - II	CC	0	0	0	2	2	
9		Industrial Internship / Certification	СС	2	0	0	0	0	

Programs Academic Information	2025-27
--------------------------------------	---------

Semes	Semester - 03 Total Credits: 21																						
S. No	Course	Course Title	Course	Credits	Weekly Contact Hours																		
5.110	Code		Туре	cicaits	CL	TU	PR	Total															
		Next Generation			2	1	2	5															
1.		Sequencing ^I	DE	4																			
		Stem Cell Technology $^{\mathrm{II}}$			2	1	2	5															
		Advanced Genetic			3	1	0	4															
2.		Engineering ^I	DE	4			Ŭ	-															
۷.		Synthetic Biology and	DE	т	3	1	0	4															
		Genetic Engineering ^{II}			5		0	4															
3.		Research Project-I	CC	5	0	0	0	0															
4.		Advanced Proteomics			2	1	2	5															
		Molecular Imaging			2	1	2	5															
		Material	FE	4																			
		Characterization and												2							1	2	5
		Techniques																					
5.		Machine learning for	DE	4																			
		biological system ^I	DE	4																			
6.		Cell Mechanics ^{II}	DE	4																			
7.		Fundementals of Perl	mentals of Perl FE 4																				
		and BioPerl	ГС	4																			

Semester - 04 Total Cred					its: 18			
	Course		Course		V		ly Co lours	ntact
S. No	Code	Course Title	Туре	Credits	CL	T U	PR	Total
1		Research Project-II	CC	15	0	0	0	0
2		Industrial Internship/Certification	СС	3	0	0	0	0

Programs Academic Information | 2025-27

Total Program Course Distribution						
Course Category	Credits	Courses				
CC: Core Courses	47	12				
DE: Specialization Sequence with Directed Electives	28	07				
FE: Free Electives	08	02				

Total Program Credit Distribution				
SN	Year	Semester	Credits Assigned	
1	First	Ι	24	
2	First -	II	24	
3	C	III	19	
4	Second -	IV	18	
	Total Semester	4	85	

Section 6: Course Sequence

Sequence of courses attaining a particular curriculum outcome or a sequence of courses attaining a particular specialization. Courses sequences could be more than 3 also. Courses to be mentioned in a sequential manner.

Sequence	Sequence	Sequence	Sequence
I	п	III	V
Bioinformatics	Biomaterials and Tissue Engineering	Bioengineering Fundamentals Research	
OMICS	Principles of Tissue Engineering	Mathematical Methods for Bio engineers	Research Methodology and IPR
Biological information system& Management	Drug Delivery: Principles and applications	Bio Techniques	Research project -I
Molecular structure	Microfluidics	Human Physiology	Research project -II

prediction and			
Visualization			
Machine learning for biological system	Cell Mechanics	Essential Biophysics	Internship
Python and bio- python	Devices and Diagnostics	Computational Biology & Biostatistics	
Data mining in bioinformatics	Biomechanics	Research Methodology and IPR	
Next generation	Synthetic Biology and Genetic		
Sequencing	Engineering		
Advanced Genetic Engineering	Stem cell Technology		
Advanced	Material characterization and		
proteomics	Techniques		
Cognitive			
Modelling			
Molecular			
Imaging			

Specialization Sequence	
I.	Bioinformatics
II.	Biomaterials and Tissue Engineering
III.	Bioengineering Fundamentals
IV.	Research

Curriculum Implementation through C-D-I-O Initiative

The CDIO[™] INITIATIVE is an innovative educational framework for producing the next generation of engineers. The framework provides students with an education stressing engineering fundamentals set in the context of Conceiving — Designing — Implementing — Operating (CDIO) real-world systems and products. Throughout the world, CDIO Initiative collaborators have adopted CDIO as the framework of their curricular planning and outcome-based assessment ^[1].

[1] http://www.cdio.org

In this curriculum, the topics in each course have been classified under one or more of C-D-I-O to provide an understanding to the students and faculties about the scope of learning. The CDIO approach addresses the needs of students, faculty and industry by collecting and formalizing the knowledge, skills and attributes that student's desire and that industry leaders expect graduating engineers to have.

List of Textbooks and Reference Books

- Molecular Biology of the Gene by James D. Watson, Tania A. Baker, StephenP. Bell, Alexander Gann, Michael Levine, and Richard Losick.
- Biochemistry by Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer.
- Kuby Immunology by Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby.
- Lehninger Principles of Biochemistry by Albert L. Lehninger, David L. NelsonandMichael M. Cox
- Biological Databases by Attwood.
- Programming the Perl DBI by O'Reilly
- Essential of MATLAB for Scientist and Engineer by Hahn Brian D
- Beginning PHP and MySQL 5: from novice to professional by W.Jason Gilmore
- Analytical Techniques In DNA Sequencing by Veena Kumari ii. DNA Sequencing From Experimental Methods To Bioinformatics by Alphey, Luke Next-Generation Sequencing Data Analysis
- Introduction to Protein Structure: Carl Branden, John Tooze (Garland)

Programs Academic Information |2025-27

- Proteins: Structures and Molecular Properties: Thomas E. Creighton (Freeman)
- Pattern recognition and image analysis by Earl Gose.
- Pattern Classification by Duda, Richard and David Stork
- Machine Learning by Mitchell and Tom
- Chemoinformatics, Concepts, Methods & Tools for Drug Discovery; Ed. Jurgen Bajorath(Humana Press)
- Chemoinformatics Ed by Johann Gasteigen, Thomas Engel, Wiley-VCH
- Molecular Modeling, Principles & Applications, Andrew R. Leach
- Bioinformatics from Genomes to Drugs ; Vol I & 2
- An Introduction to Chemoinformatics, Andrew R. Leach, Valerie J. Gillet. REisbergandR. Resnick.
- The Art of Concurrency by Clay Breshears, O Reilly 91
- Introduction to Parallel Computing (2 Ed) by Ananth Grama, Anshul Gupta, GeorgeKarypis,
 Vipin Kumar, Addison Wesley
- Professional C++ by M Gregoire, NA Solter, SJ Kleper (2Ed)