Program Academic Information

Master of Technology Medical Technology 2025-27

Table of Contents

Section 1: Program General Information	2
Name	2
Level	2
Section 2: Program Educational Objectives (PEOs)	2
Section 3: Program Outcomes	3
Section 4: International standards and subject benchmarks	3
Referred URL	3
Section 5: Program Structure	4
Semester 01	4
Semester 02	5
Semester 03	5
Semester 04	6
Total program course distribution	6
Section 6: Core Sequence	6
Section 7: Specialization sequence	7
Section 8: List of Textbooks and Reference Books	8

Section 1: Program General InformationProgramM.Tech Medical TechnologyLevelPostgraduateCourse Duration2 years (4 Semester)

Section 2: Program Educational Objectives (PEOs)

Broad goals that address institutional and program mission statements and are responsive to the expressed interests of various groups of program stakeholders.

	Graduates will become innovators or entrepreneurs engaged in					
PEO-1:	technology development, technology deployment, or engineering system					
	implementation in the healthcare industry.					
	Graduates will be able to enhance their skills in designing and developing					
	various electronic or computer aided devices and software for applications					
PEO-2:	in medical instrumentation, medical imaging, physiological measurement,					
	medical signal processing, and product design.					
	Graduates will be able to address challenges in medical industries or					
PEO-3:	interrelated professions.					
	Graduates will be able to exhibit leadership skills, make decisions with					
PEO-4:	societal and ethical responsibilities, function and communicate effectively					
	in multidisciplinary activities.					
	Graduates will be able to pursue research career in internationally					
PEO-5:	recognized centres.					

Section 3: Program Outcomes

The program must then formulate a set of program outcomes (knowledge, skills, and attitudes the program graduates should have) that directly address the educational objectives and encompass certain specified outcomes.

1.	Ability to apply the knowledge of Science, Technology, Engineering and Mathematics to address healthcare problems.
2.	Ability to identify and analyze healthcare problems and formulate feasible technical solutions to improve the health and health care.
3.	Ability to design system components or processes that meet the specified needs with realistic constraints, including public health, safety, culture, society, ethics, sustainability and environment.
4.	Ability to use appropriate techniques, skills, resources and modern engineering and IT tools necessary for prediction, modeling and solving complex engineering activities with an understanding of the limitations.
5.	Develop problem solving ability to assess societal, health, safety, legal and cultural issues through engineering solutions.
6.	Ability to think critically to inspire sustainable development.
7.	Ability to have a thorough understanding of professional and ethical responsibility.
8.	Ability to perform within a diversified multidisciplinary team and exhibit leadership.
9.	Ability to engage in independent and life-long learning.

Program Specific Outcomes :

By the end of the program, students should be able to develop the following specific skills and accomplishments

PSO-1	Graduates will be proficient in applying emerging technologies to solve practical healthcare problems, working directly with industry partners to deploy solutions that enhance patient care, and improve diagnostic accuracy.
PSO-2	Graduates will be able to apply advanced engineering principles, coupled with industry best practices, to create innovative and regulatory-compliant

medical devices. They will be skilled in using industry-standard tools and technologies, ensuring readiness for roles in R&D, quality assurance, and product development in the medical technology sector.

Section 4: Program Benchmarking

Details of the international standards / subject benchmark statements referred and web link for the same.

International standards / benchmarks	URL
statements referred	
	https://www.tuni.fi/en/study-with-us/medical-
Tamperene University, Finland	physics-and-biomedical-instrumentation-
	biomedical-sciences-and-engineering
National Institute of Pharmaceutical	https://niperguwahati.ac.in/syllabus/4_8.Syllabus_
Education and Research (NIPER)	MD_NIPER-G.pdf
Sree Chitra Tirumala Institute for Medical Sciences and Technology, Trivandrum	https://www.sctimst.ac.in/About%20SCTIMST/Orga nisation/BioMedical%20Technology%20Wing/Dep artment%20of%20Medical%20Devices%20Enginee ring/
School of Medical science and Technology (SMST), IIT Kharagpur	http://www.smst.iitkgp.ac.in/Smst/curriculum
Accreditation Board of Engineering &	http://www.abet.org/
Technology (ABET)	
CDIO [™] Educational Framework	http://www.cdio.org/

Section 5: Program Structure						
CL	Classroom Interaction	TU	Tutorials	PR	Practical	
сс	Core Course	FE	Free Elective	DE	Specialization Sequence with Directed Electives	

Seme	Semester - 01 Total Credits: 21							
S. No	Course Code	Course Title	Course Type	Credits	Wee CL	kly C TU	ontac PR	t Hours Total
1.	Code	Medical Signal Acquisition and Analysis	CC	4	2	1	2	5
2.		Medical instrumentation-I	CC	4	2	1	2	5
3.		Digital Design of Biomedical Products	DE	4	2	1	2	5
4.		Biomechanics and Rehabilitation Engineering	СС	4	2	1	2	5
5.		Design Thinking for Medical Innovation	DE	3				
6.		Seminar and Technical Writing - I	СС	0	0	0	2	2
7.		Research Methodology and Medical Ethics	СС	2	1	1	0	2

*Bridge course in Biology (credit -0) can be offered for students having non-relevant backgrounds.

Seme	Semester - 02 Total Credits: 24								
S. No Course		Course Title	Course	Cre	Weekly Contact Hours				
3. NU	Code	Course Title	Туре	dits	CL	T U	P R	Total	
1		Medical Instrumentation-II	CC	4	2	1	2	5	
2		Biomaterials and Artificial Organs	DE	4	3	1	0	4	
3		Physiological Modeling and Computation	DE	4	2	1	2	5	
4		Medical Image Processing	CC	4	2	1	2	5	
5		Entrepreneurship and IPR	DE	2	2	0	0	2	
6		Biomedical Device Quality and Regulatory standards			3	1	0	4	
0		Healthcare Data Analytics and Visualization	FE	4	3	1	0	4	
7		BioMEMS Biosensors and Systems			3	1	0	4	
8		Seminar and Technical Writing - II	CC	0	0	0	2	2	
9		Industrial Internship - I	CC	2	0	0	0	0	

Seme	Semester - 03 Total								
S NO		Course Litle	Course	Credits	Weekly Contact Hours				
	Code		Туре		CL	TU	PR	Total	
1		Bio Additive Manufacturing	DE	4					
2		Assistive Technology and	СС	4	2	1	2	5	
		Medical Robotics							
3		IoMT and Wearable Devices	DE	4	2	1	2	5	
4		Research Project-I	CC	5	0	0	0	0	
		XR in Healthcare			2	1	2	5	
5		Deep Learning in Medical	FE	4	2	1	2	5	
		Technology		-					
		AI in healthcare			2	1	2	5	

Semester - 04					Т	otal	Cred	its: 18
C No	Course		Course		V		ly Co lours	ntact
S. No	Code	Course Title	Туре	Credits	C L	T U	P R	Total
1		Research Project-II	CC	15	0	0	0	0
2		Industrial Internship - II	CC	3	0	0	0	0

Total Program Course Distribution						
Course Category	Credits	Courses				
CC: Core Courses	48	11				
DE: Specialization Sequence with Directed Electives	24	07				
FE: Free Electives	08	02				

Total Program (Credit Distribution		
SN	Year	Semester	Credits Assigned
1	First		22
2	FIISt	II	24
3	Second		21
4	Second	IV	18
	Total Semester	4	85

Section 6: Core Sequence

Sequence of courses attaining a particular curriculum outcome or a sequence of courses attaining a particular specialization. Courses sequences could be more than 3 also. Courses to be mentioned in a sequential manner.

Sequence	Sequence	Sequence	Sequence	Sequence
I	II	III	IV	V
Medical Devices	Biomedical and Organ Engineering	Medical	Medical	Biomedical
		Data	System	Research
		Analysis	Application	Nesearch
Medical instrumentation-I	Tissue Engineering	Medical Signal Acquisition and Analysis	Digital Design of Biomedical Products	Research Methodology and Medical Ethics
Medical Instrumentation-II	Artificial Organs and Biomaterials	Physiological Modeling and Computation	Assistive Technology and Medical Robotics	Biomedical Device Quality and Regulatory standards
IOMT and Wearable Devices	Biomechanics and Rehabilitation Engineering	Medical Image Processing	Bio additive Manufacturing	Entrepreneurshi p and IPR
Biosensors and Systems		Deep learning in medical Technology		Research Project-I/II
		XR in Healthcare		Industrial Internship – I/II
		Healthcare Data Analytics and Visualization		Seminar and Technical Writing
				Quality Control and Standards for Biomedical Devices

Specialization Sequence		
1. Medical Devices		
2. Biomedical and Organ Engineering		
3. Medical Data Analysis		
4. Medical System Application		
5. Biomedical Research		

Curriculum Implementation through C-D-I-O Initiative

The CDIO[™] INITIATIVE is an innovative educational framework for producing the next generation of engineers. The framework provides students with an education stressing engineering fundamentals set in the context of Conceiving — Designing — Implementing — Operating (CDIO) real-world systems and products. Throughout the world, CDIO Initiative collaborators have adopted CDIO as the framework of their curricular planning and outcome-based assessment ^[1].

[1] http://www.cdio.org

In this curriculum, the topics in each course have been classified under one or more of C-D-I-O to provide an understanding to the students and faculties about the scope of learning. The CDIO approach addresses the needs of students, faculty and industry by collecting and formalizing the knowledge, skills and attributes that student's desire and that industry leaders expect graduating engineers to have.

List of Textbooks and Reference Books			
Course name	Textbooks/ Reference Books/ Study Materials		
Medical instrumentation-I Medical	 Introduction to Biomedical Engineering" by John Enderle and Joseph Bronzino Medical instrumentation by John G webster 		
Instrumentation-II	 Biomedical instrumentation by RS Khandpur 		
IOMT and Wearable Devices	 Introduction to Biomedical Equipment Technology by Joseph J. Carr and John M Brown IOMT by Dr.Ruby Dwivedi Biomedical Instrumentation and Measurements by Leslie Cromwell, Fred J Weibell, Erich A Pfeiffer 		
Quality Control and standards for Biomedical Devices	 Total Quality Management by J. E. Rose, Kogan Page Ltd., 1993 		
	 The Practise of clinical Engineering, Cesar A. Cacere & Albert Zana, Academic Press, Newyork, 1997 		
	 The Essence of Total Quality Management, John Bank, Prentice Hall of India, 1993 		
	 Clinical Engineering, Principles & Practices, Webster J.G and Albert M.Cook, Prentice Hall Inc., Engle wood cliffs, New Jersey, 1979 		
Biomechanics and Rehabilitation Engineering	 Biomechanics: "Mechanical Properties of Living Tissues" by Y C Fung, Springer, 2 nd edition, 1993 		
	 Basic biomechanics by Susan.J. Hall, Tata Mcgraw hill, 4 th edition, 2004 		
	 Biomechanics- Principles and Applications by D. J. Schneck and J. D. Bronzino, CRC Press, 2 nd Edition, 2000. 		
	 An Introduction to Rehabilitation Engineering by Rory A Cooper, Hisaichi Ohnabe, Douglas A Hodson, CRC Press, First edition, 2006 		
Artificial Organs and Biomaterials	 Biomaterials by Ratner 		
	 Biomaterials by sujata v bhat 		
	 Artificial organs by Nadey S Hakim 		
	 Biomaterials science and Tissue Engineering by prof.Bikramjit Basu 		
Medical Signal Acquisition and Analysis	 Biomedical Signal Processing: Principles and Techniques by D.C.Reddy, 2nd editio, Tata McGraw-Hill, New Delhi, 2005. 		

 Biomedical signal processing by Rangaraj.M.Rangayyan, 1st edition, IEEE press, 2002 		
 Biomedical Engineering Handbook by Joseph.D.Bronzino, 3rd edition CRC,Press, 2005 		
 Digital Signal Processing, Algorithms and Applications by John G, Proakis and Dimitris Manolakis G,PHI of India Ltd., New Delhi, fourth Edition 		
 Digital Signal Processing by Sanjit.K, Mitra, Tata McGraw- Hill, New Delhi, fourth edition 2011. 		
 Biomedical digital signal processing by tompkins 		
 Signals and systems in biomedical engineering: signal processing and physiological systems modeling. By suresh devashyam 		
 Physiological Control Systems by Michael C.K. Khoo, Analysis, Simulation and Estimation, 2012, 1st Edition, Prentice Hall of India 		
 Dynamic Systems Biology Modeling and Simulation by Joseph DiStefano, 1st Edition, Academic Press, Massachusetts 		
 Application of Control Theory to Physiological Systems by H. Thomas Milhorn, 2010, 1st Edition, Saunders (W.B.) Co Ltd., Philadelphia. 		
 Control system Engineering by Norman 		
 Digital image processing by Gonzalez and woods 		
 Principal of medical imaging by kirk shung 		
 Fundamentals of Digital Image Processing by Anil K Jain, Pearson Education. 		
 Fundamentals of Digital image processing by Dr. Sanjay Sharma,sk kataria& sons 		
 Deep learning for medical image analysis by Elsvier 		
 Computational methods for deep learning By: Yan, Wei Qi 		
 Introduction to Deep Learning in Medical Image Analysis by 		
 Ms. S. Purnima, Dr. M.S Jeyalakshmi 		
 Engineering Drawing -Geometrical Drawings by S.K. Kataria 		

	 Engineering Graphics by K.R. Mohan Fundamental of Engineering Drawing & Graphics Technology,French, Thomas E.,Vierck, C. J. and Foster,R. J 		
	 Engineering Drawing: Plane and Solid Geometry by Bhatt N.D.Panchal V.M 		
Assistive Technology and Medical robotics	 Robotic assistive Technology: Principles and practices by pedro and albert, CRC press 		
	 A handbook of assistive technology for people with visual disability by Suraj Singh, Century publication, New Delhi. 		
Bio Additive Manufacturing	 Additive Manufacturing Technologies by Ian Gibson, David Rosan, Brent Stucker, Springer, 2010 		
	 Rapid Prototyping: Principles and Applications Chua C.K.,Leong K.F., and Lim C.S.Second Edition, World scientific Publishers, 2003 		
	 Andreas Gebhardt, Understanding additive manufacturing: rapid prototyping, rapid tooling ,rapid manufacturing, Hanser Publishers, 2011. 		
Research	 Research Methodology for Engineers by R ganeshan 		
Methodology	 Research Methodology and IPR by Mayura Yewale, Technical Publications 		
Medical Device and Regulatory Affairs	 "Regulatory Affairs for Biomaterials and Medical Devices" edited by Stephen F. Amato and Robert M. Ezzell Jr. 		
	 "Medical Device Innovation Handbook" Paperback , by William Durfee (Author), Paul laizzo, 2014 		
	 "Combination Products: Regulatory Challenges and Successful Product Development" edited by Smita Gopalaswamy and Siddhartha Ghosh 		
Medical Ethics and IPR	Biomedical Ethics Perspectives in the Indian Context Vol.1- 2022" by ICMR, Jaypee publisher		